At first, we sample f(x) in the N (N is odd) equidistant points around x^*:

    \[   f_k = f(x_k),\: x_k = x^*+kh,\: k=-\frac{N-1}{2},\dots,\frac{N-1}{2}\]


where h is some step.
Then we interpolate points \{(x_k,f_k)\} by polynomial

(1)   \begin{equation*}    P_{N-1}(x)=\sum_{j=0}^{N-1}{a_jx^j}\end{equation*}


Its coefficients \{a_j\} are found as a solution of system of linear equations:

(2)   \begin{equation*}    \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2}\end{equation*}


Here are references to existing equations: (1), (6).
Here is reference to non-existing equation (??).

(3)   \begin{equation*}    \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2}\end{equation*}

(4)   \begin{equation*}    \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2}\end{equation*}

(5)   \begin{equation*}    \left\{ P_{N-1}(x_k) = f_k\right\},\quad k=-\frac{N-1}{2},\dots,\frac{N-1}{2}\end{equation*}

(6)   \begin{equation*}    r = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt[]{\sum_{i=1}^{n}(x_i - \bar{x})^2 \sum_{i=1}^{n}(y_i - \bar{y})^2}}\end{equation*}

CityPin CodeStateNameSurname
sdssds
dss
dsssd
ds

Matrix

[katex display=true] 
\begin{bmatrix}
1 & 2 & 3\\
a & b & c
\end{bmatrix}
[/katex]

Search

Table of Contents

You may also like to read